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BRIEF NOTES

A Simplified Variation of Parameters
Approach to Euler’s Equations

D. L. Richardson' and J. W. Mitchell®

A normalized form of Euler’s equations is rewritten in a variation
of parameters approach using amplitudes and angular displace-
ment as parameters. This new form is compact and yields a more
accurate numerically integrated solution over longer simulation
times than does a conventional integration of the Euler equations.

1 Introduction

Variational methods have played an important role in solving
ordinary differential equations since their introduction by John Ber-
noulli in the late 17th century. Perhaps the most famous application
of a variational method, the variation of orbital elements or the
variation of constants, was performed by Leonhard Euler between
1748 and 1752 to describe the mutual perturbations of Jupiter and
Satumn. However, it was not until 1782 that Joseph-Louis Lagrange
fully and completely developed the method of the variation of
parameters (VOP) in an application involving cometary motion.
His approach is widely used today, particularly in astrodynamics
applications where perturbed two-body motion is considered.

Because the moment-free rigid-body motion equations devel-
oped by Euler in 1754 admit an analytical solution, it seemed
desirable to apply Lagrange’s method of the variation of parameters
to these equanons It was hoped that the resulting differential equa-
tions would enjoy the same numerical robustness that characterizes
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the VOP astrodynamics equations. We have indeed found this to
be the case through a careful selection of VOP system parameters.

A VOP approach to Euler’s equations and to the general
orientational motion of rigid bodies has been investigated sev-
eral times since the mid-1970s. Early work by Kraige and Jun-
kins (1976) and Donaldson and Jezewski (1977) used the
body’s kinetic energy and angular momentum as the primary
parameters in a general VOP scheme. The resulting equations
were algebraically complex. The later work of Kraige and Skaar
(1977) and Kraige (1978) did introduce less complexity to the
form of the variational equations. More recently, Bond (1996)
investigated a VOP scheme for rigid-body motion that utilized
the case of symmetric, torque-free motion as the analytical basis
for generating the parameters. Taken altogether, we felt that
thére was still room for improvement through a more judicious
selection of parameters developed from the analytical solution
to the general problem of torque-free rotation.

In the following, we present our development of Euler’s equa-
tions in a VOP form using parameters that we feel are more natural
and intrinsic to the problem. Our resulting VOP equations are not
algebraically complex making them desirable for use in numerical
simulations. We apply our approach to the constant-torque problem
to demonstrate how our VOP equations provide greater accuracy
integrations over longer simulation periods independent of the nu-
merical propagation method chosen.

2 Formulation

2.1 Analytical Solution. The classical Euler’s equations
for rigid-body motion are given by the coupled first-order sys-
tem

Lo, = (I; - L)wyws + M,
Lo, = (I — L)wws + M, 1)
Loy = (I, — L)ww, + Ms.

The w; are the components of the angular velocity of the body
expressed in a body-fixed principal-axis coordinate frame. The
I; and M; are the principal-axis moments of inertia and external
moment components, respectively.

Rewriting Egs. (1), we have

wy, = _A1(IJ2(JJ3 + M|/11,
wy, = A2w|w3 + Mz/]z, (2)
L;J; = —A3W|W2 + M3/13,

where
A = (L - L)/,
Ay = (I - 1)/, (3)
As = (I, = )L,

and 5 > L, > I,.
Upon performing a change of variables defined by the rela-
tions

Q,- = UJ,/J’Z and % = VA1A2A3 s (4)
the Euler equations become the normalized expressions
Q{ = _ang + Gl,
Q= UM%+ G, (&)

Q:; = _anz + G3,

where the prime indicates d/d T and G,; are the rescaled external
moments.

[
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Tw6 independent integrals of motion, ¢, and c,, of the unper-
turbed equations are obtained from the expressions

d 1 2 ' )
; EQI = Q15.31 = —Qlﬂzﬂss

d (1
—(-m>=mm= Q0. § 6)
dr \2

dr

d (% n;) = 0,0 = - 0,00,

/
and, by inspection, are seen to be

i+ 03 = }

Q2 + Q2 = c3.

These integrals of motion are related to the classical integrals
of energy T and angular momentum H by

(7

271, — H?
2 3
cl=——m—e =0, (8)
YT =) - b)
2
3= H 271, = 0. 9)

(L - n)(L - 1)

The solutions for the ; of the unperturbed system are devel-
oped by first considering the second of Egs. (5). Combining
this with Eqs. (7) gives

Q5 & cieVl — s2 91 — k352, (10)

with s = Q,/c¢, and k = ¢,/c, = 0 where k is called the modulus.
By restricting k such that 0 = k < 1 and integrating Eq. (10),
we obtain

sn~!(s) = c2(T = To) & u. (11)

Using this result along with Eqgs. (7) produces the solutions for
the Q;:

Q, = cien(u),
Q, = cisn(u), (12)
Q3 = czdn(u)

It is seen that c,, c¢;, and 7, form a natural set of elements
(parameters ) for the characterization of the solution to the mo-
ment-free Euler equations. The variable u is viewed as the intrin-
sic angular variable for this problem.

2.2 Variation of Parameters. The variations of the two
independent integrals of motion, ¢, and c,, are obtained by
direct differentiation of Egs. (7) along with substitutions from
Egs. (5), yielding

cl = cl (G, + 0G,) = cn(u)G, + sn(u)G,,
1

(13)
1
C2

c; = — (G, + UG;) = ksn(u)G, + dn(u)Gs;.

From a numerical perspective, integrating directly for the
argument u is somewhat more algebraically desirable than inte-
grating the variational equation for 7, and then forming u.
Accordingly, we develop u’ directly by manipulation of 2, and
Q, from Egs. (12) to produce

cn(u)Q) — sn(u)Q = cyue’dn(u)

_ adn(w)

TE] [E(u) — k2u — k*sn(u)cn(u)/dn(u)lk’. (14)
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Fig. 1 Two-norm errors for numerical integrations of the modified Euler equations (non-VOP)
and the variation of parameters equations (VOP) for approximately 3000 cycies of £,

In the above expression, k2 = 1 — k? is the complementary
modulus, E(u) is the incomplete elliptic integral of the second
kind, and k' is given by

k' = zl— [en(u)G, + ksn(u)G, — kdn(u)Gs]. (15)
2
After some algebraic manipulation, we arrive at the desired

expression

1
C|k3

+ k2cn(u)dn(u)G, + k*sn(u)cn(u)G;
+ [E(u) — k2ul[cn(u)G, + k2sn(u)G,

[k(c} - c}) — sn(u)dn(u)G,

u' =

- kdn(u)Gs]1]. (16)

In summary, the variation of parameters solution to the per-
turbed Euler system of normalized Egs. (5) is given by Egs.
(12) with the differential equations for the parameters given by
Eqgs. (13) and (16).

3 A Numerical Demonstration

We demonstrate the numerical behavior of our variation of
parameters solution by comparisons to numerically generated
solutions of the normalized Euler system of Egs. (5). The solu-
tion to the problem of a constant torque applied to the body is
of interest in satellite attitude determination applications (Wil-
liams and Tanygin, 1996). We chose this problem to illustrate
the robustness of our VOP formulation. To this end, we selected
the external moment components G; to be constants of the same
order of magnitude as the €2; components. We used

Gl = Gz = G3 = 1.0. (17)
We completed our system initialization by specifying values at
T=0as
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1(0) =05, c(0) =10, u(0)=0.0, (18)
which produced the initial conditions
0(0) = a1, 2(0) =00, 2(0)=c. (19)

Using these initial conditions, the variational equations (Egs.
(12) through (16)) and Euler’s equations (Egs. (5)) were inte-
grated numerically using a Runge-Kutta 4/5 scheme. Both sys-
tems of equations were integrated with the same fixed step size.
This step size h was taken to be approximately 1/400th of the
initial dn(u) period as specified by the initial conditions, i.e.,
h = K/200, where K = K(k) is the complete elliptic integral
of the first kind. In this case, we have K(0.5) =~ 1.686.

Both sets of double precision (IEEE Standard 754) integra-
tions were compared to an extended precision (16-byte) inte-
gration of Egs. (5). The extended precision step size was ap-
proximately 1/4000th of the initial dn(u) period. This integra-
tion was performed by using a 16th-degree first-order
Chebyshev procedure (Richardson et al., 1998).

For each integration, we computed and graphed the two-norm
error,

e = V(AN + (AL)? + (A,)?, (20)

where AQ; = QF — §; is the difference of 2; when compared
with the extended precision result, 2*. Figure 1 shows the error
propagation results.

From this figure, it is seen that the variation of parameters
solution maintains an accuracy of several orders of magnitude
better than that produced by direct integration of the normalized
Euler equations. This behavior was expected largely because of
similar behaviors that have been observed in the numerical
integration of various sets of VOP equations used in astrody-
namics applications.

4 Concluding Remarks .

In this paper, a variation of parameters solution is developed
for a normalized form of the arbitrarily perturbed Euler’s equa-
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tions for attitude motion. The three parameters of the variation,
two amplitudes, and an angular displacement lead to a very
compact form that yields higher numerical accuracy over longer
simulation intervals than did direct integration of Euler’s equa-
tions for the same fixed step size. This improved accuracy is
the result of the reformulation using the variation of parameters
and thus independent of the numerical integration scheme.

While the accuracy of the integration did improve, one disad-
vantage of this method is additional computational overhead.
Much of this overhead is due to the calculation of the necessary
special functions. This additional computation is consistent with
the variation of parameters integrations of the orbital elements
in astrodynamics applications and is expected. For applications
involving algebraically complex moment components, the vari-
ational equations will produce comparable execution timings.

With regard to step size, the reader should note that the
normalized Euler equations and the variation of parameters
equations both contain the same spectral content. Consequently,
the variation of parameters equations cannot be integrated using
step sizes that are substantially greater than that needed for the
normalized equations.
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