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Autonomous use of optical sensors for obtaining self-contained navigation 
solutions in a lunar orbit that are independent of ground or other external aids is 
explored.  Tracking of multiple unknown landmarks on the Moon is considered 
along with a disk measurement providing range information from infrared 
sensors.  Sensitivity of the navigation performance to sensor accuracy, 
measurement frequency, and initial error is assessed.  Navigation performance 
obtained from tracking unknown landmarks is compared with performance 
obtained from tracking known landmarks. 

 
 

INTRODUCTION 
 
With the exploration of the Moon under NASA’s Constellation Program, there is an 
increased interest in innovative navigation systems that are autonomous and reliable.  
This paper explores the navigation accuracy that can be obtained in lunar orbit using 
visible and infrared optical sensors in a self-contained manner that is independent of 
ground or other external aids.  For greater autonomy and flexibility, tracking of unknown 
landmarks on the Moon is considered using the visible camera along with disk 
measurements from infrared detectors for range information.  Tracking unknown 
landmarks, as opposed to known landmarks, requires additional states to solve for in the 
navigation algorithm, but does not necessitate storing a separate catalog of landmarks and 
employing a landmark identification algorithm. 
 
In this paper, sensitivity of the navigation performance to sensor accuracy, measurement 
frequency, and initial error is assessed.  An Extended Kalman Filter (EKF) with a high-
fidelity implementation of the lunar orbit using the LP165P lunar gravity model is used to 
estimate the position and velocity of a spacecraft in a low-lunar orbit.  Navigation 
performance obtained from tracking unknown landmarks is compared with performance 
obtained from tracking known landmarks.   
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METHODOLOGY 
 
The position and velocity of a spacecraft in a lunar orbit are estimated from optical 
measurements with an extended Kalman filter (EKF).   The use of the EKF has been well 
documented in the literature (e.g., Gelb1) and is only briefly described below followed by 
the description of the optical measurements used. 
 
Extended Kalman Filter 
 
Given the equations of motion and measurement data, an EKF can provide a minimum 
variance estimate of the spacecraft position, velocity and other state variables such as the 
lunar-fixed coordinates of an unknown landmark.  The basic equations are summarized 
below. 

The general non-linear state propagation model is represented by: 

                                           )()()),(()( twtGttxftx vvv
&v +=  (1) 

where the states xv  are the inertial position and velocity of the spacecraft and the position 
of an unknown landmarks in selenographic coordinate frame (i.e., lunar-fixed): 
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The process noise wv  is assumed to have normal distribution with zero mean and spectral 
density Q :  wv (t) ~ N(0, Q(t)).  The general non-linear measurement model is represented 
by: 
                                                            kkk vxhz vvvv += )(  (3) 
 
where the measurement noise is assumed to have zero mean and covariance Rk: kvv  ~ N(0, 
Rk).  The EKF formulation requires linearization of these models at each measurement 
time step.  Accordingly, we define the output and system matrices as: 
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Between measurements, the state and covariance are propagated using the following 
equations: 
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where Φ is the state transition matrix.  When measurements are available, the state and 
covariance are updated using the following equations: 
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where the Kalman gain is given by: 
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Measurements 
 
Two types of measurements from the optical sensor (camera) are considered for 
navigation in lunar orbit.  First is the angle between a landmark on the Moon and an 
inertial reference.  Second is the disk measurement of the Moon.   
 
Angle Measurement.  An inertial reference can be a star whose inertial position is known.  
If the field-of-view (FOV) of the camera is large enough, the star and the landmark can 
be viewed simultaneously, and the measurements are susceptible mainly to the camera-
related errors.  Since the position of the star that is sighted with the landmark has to be 
known, a star catalog and a star-identification algorithm are required.  Alternatively, if 
the inertial attitude of the spacecraft, and hence the sensor, is known from a separate star 
tracker and gyros, then the camera coordinates themselves can be used as the inertial 
references.  This method is susceptible to any star tracker and gyro errors as well as any 
misalignments relative to the optical sensor.  Since the star tracker is an optical sensor 
itself, it can be used for landmark tracking as well, but the desired pointing for landmarks 
will be opposite that for star sensing for attitude determination.  In this paper, the inertial 
attitude of the optical sensor is assumed known, and the inertial references will be the 
sensor axes. 
 
The angle measurement equation is derived by first assuming a star inertial reference, 
then extending it to the sensor coordinate frame.  For simplicity, the sensor coordinate 
frame is assumed co-aligned and centered with the spacecraft coordinate frame.  The 



angle measurement can be obtained from the inner product of the Line-of-Sight (LOS) 
vector measurements to the two objects in the sensor frame:  
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where θ is the angle between the two LOS vectors.  The basic geometry for this 
measurement type is shown in Figure 1.   
 
 

 
Figure 1  Angular optical measurement 

 
The vector rv  is from the Moon to the spacecraft and is part of the EKF state to be 
estimated.  The vector SLMr /ˆ  is from the spacecraft to the landmark and is one of the unit 
vectors measured by the sensor.  The remaining vectors shown in the figure are LMrv  from 
the Moon to the landmark and ŝ , the unit vector from the spacecraft to the star as 
measured by the sensor.  So in Eq. (8), the first unit vector is derived from the (XLM,YLM) 
angular coordinates of the landmark in the focal plane: 
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Similarly, the second unit vector in Eq. (8) can be derived from the focal plane angular 
coordinates of the star.  Unit vector computation can be bypassed by computing the angle 
between the landmark image and the star image directly from spherical trigonometry and 
taking the cosine of the angle. 
 
If the inertial attitude of the camera is known, then the X̂  and the Ŷ  unit vectors of the 
camera coordinate frame itself can both be used as the second unit vector in Eq. (8).  The 
same inner product equation applies, so that 
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where the elements of the unit vector 1û  is given by Eq. (9).   
 
To formulate the measurement equation in terms of the states, the 1û  is computed in 
terms of the inertial position vector from the Moon to the sensor, rv , and the position of 
the landmark relative to the Moon, LMFxv : 
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where TI/F is the transformation from the lunar-fixed coordinate frame to the inertial 
frame.  Since the transformation matrix from the inertial frame to the sensor frame is 
known, 
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derived from the known inertial attitude, the equation for the landmark angular 
measurement is given by 
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Disk Measurement.  Another type of measurement is the angle subtended by the disk of 
the Moon.  Since the physical size of the Moon is known, the distance between the 
camera and the Moon can be deduced from this measurement. The geometry for this 
measurement type is shown below. 

 
 

Figure 2  Geometry for disk measurement 
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The measurement is the sine of half of the subtended angle  
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which can be derived from the angular measurement of a circular template fitted to the 
image on the focal plane.  The disk measurement can be written in terms of the distance 
to the Moon, r, as follows: 
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Because of frequent night passes, this measurement type is most useful with an infrared 
sensor.  The use of infrared sensors on the Moon has been considered for a very long 
time, see for example Falbel2, where it is shown that the total radiance from the dark side 
of the Moon is about 4 times greater than the minimum detectable radiance of 0.1 
milliwatts/cm2-ster.  The total radiance from the light side of the Moon is 100 times 
greater than the dark side.  The challenge is to have a detector that has the large range of 
sensitivity to cover both the dark and the light sides of the Moon to enable disk-range 
measurements at all times as the spacecraft orbits the Moon.  Instead of an IR sensor, a 
radar altimeter can provide the same type of measurement; however, in this paper we are 
limiting ourselves to optical sensors.  Landmark size measurements are possible as well, 
but this requires identification of the landmark and knowledge of its physical dimensions. 
 
 
Landmark tracking 
 
To simplify the Kalman filter with unknown landmarks, the position of only one 
landmark is estimated at a time.  Therefore, when a given landmark goes out of the FOV, 
a new one is picked up and tracked.  Whether a landmark is visible is determined from 
the following geometry.                              



                       
Figure 3  Geometry for computing landmark visibility 

 
Since the spacecraft is assumed controlled to nadir-pointing, we assume that a landmark 
is in the FOV of the camera if the following condition is satisfied: 
 

                                                            
R

lrrr LM
T −

>ˆˆ  (16) 

 
where 
 

  

angle half FOV camera 
tan1

))(tan1(

surfaceMoon   with thecone camera the
 ngintersecti plane  the tospacecraft from distance 

Moon  theof radius
spacecrafttheMoon tothefromdistance 

2

2222

=
+

−+−−
=

=
=
=

θ
θ
θ Rrrr

l
R
r

 

 
For a landmark to be tracked by the visible optical sensor, it also needs to be illuminated.  
A landmark is illuminated if the following condition is satisfied: 
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Once a landmark is acquired by the sensor, the initial guess of its lunar-fixed coordinates 
to input into the Kalman filter is derived from the current estimate of the spacecraft 
position, the inertial attitude of the sensor, and the angular position of the landmark itself 
in the focal plane.  First the unit vector to the landmark from the sensor in the sensor 
frame, [ ]SensorSLMr /ˆ , is given by Eq. (9).  In Figure 3, if the sensor FOV half-angle θ is 
replaced by the measured landmark’s cone angle from the sensor boresight,  
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then the vector from the sensor to the landmark can be estimated to be 
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where lest is computed from the current estimate of the spacecraft position, estrv .  With the 
inertial attitude of the sensor known, this unit vector can be rotated into the inertial frame 
and combined with the current estimate of the sensor (spacecraft) position relative to the 
Moon to obtain the landmark’s lunar-fixed coordinates: 
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where TI/S is the transformation from the sensor frame to the inertial frame which is the 
transpose of what was given in Eq. (12), and TF/I is the transformation matrix from the 
inertial frame to the lunar-fixed frame whose formulation can be obtained from 
references such as Escobal3.  This then becomes the initial landmark position estimate 
corresponding to the newly acquired landmark.   
 
 
RESULTS 
 
As an example, we consider a spacecraft in a low-lunar circular polar orbit with an 
altitude of 100 km whose orbit period is about 2 hours.   At this altitude, the maximum 
visibility duration of any single landmark is approximately 12 minutes.  The true orbit is 
propagated with the effects of the Moon’s gravity using the LP165P gravity model.  This 
model was derived from radio tracking of the Lunar Orbiter 1 to 5, Apollo 15 and 16 
subsatellites, Clementine, and all the data (Jan 11, 1998 to July 30, 1999) of the Lunar 
Prospector spacecraft (Ref. 4). 
 
The mean rotational period of the moon is 27.3 days. So in 2 days, the moon rotates about 
26 degrees. Figure 4 shows the orbit in selenographic and inertial coordinate frames over 
2 days.  The spacecraft will spend about half its time in the Moon’s shadow where visible 
optical imaging of the lunar surface is not possible. 
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Figure 4  Low Lunar orbit in selenographic and inertial coordinate frames  

 
 
Two possible scenarios for landmark tracking are considered.  One is where we assume 
the sensor is strictly nadir pointing and a landmark is tracked as long as it is in the FOV 
of the sensor.  The other is where we assume the sensor can slew to follow the landmark 
until it disappears from the horizon.  The two scenarios will be referred to as FOV-
tracking and horizon-tracking, respectively.  In both, it is assumed that a new landmark is 
acquired as soon as the current one is no longer visible.  For simplicity, instantaneous 
slewing to the starting horizon is assumed for the horizon-tracking scenario.  In reality, it 
would take a finite time to slew the sensor back to start tracking a new landmark.  
Theoretically, if the FOV of the sensor is large enough to span the horizon, then slewing 
is not required.  In the simulations, horizon tracking is implemented in this manner. 
 
The initial orbit for the simulations was selected such that during roughly half the orbit, 
the sensor is on the dark side of the Moon so that no visible landmark tracking can be 
made.  If the orbit was along the terminator of the Moon, on the other hand, continuous 
landmark tracking is a possibility.   Illumination of the Moon as seen by the sensor is 
shown in Figure 5. 
 
In addition to landmark tracking, we can introduce infrared disk measurements.  For the 
100 km altitude orbit considered in this study, the Moon subtends an angle of 142 deg.  
This large angle sensing can be accommodated with mirrors or with arrays of IR 
detectors.  One such arrayed IR sensor is described in Reference 5.  False limb detections 
due to terminator crossing or shadows on the lunar surface can be avoided by scanning 
from the outer-most detector which senses the cold space towards the inner-most 
detector.     
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Figure 5  Fraction of illumination of the Moon as seen by the sensor in its orbit 

 
Simulation Parameters 
 
Parameters that were varied in this navigation study and their values are: 

1. Tracking method 
a. FOV-Tracking (70 deg example) 
b. Horizon-Tracking 

2. Landmark knowledge 
a. Known 
b. Unknown (solve for landmark position in EKF) 

3. Landmark measurement accuracy (1σ) 
a. Do not use 
b. 0.1 deg 
c. 0.01 deg 

4. Disk measurement accuracy 
a. Do not use 
b. 1 deg 
c. 0.1 deg (typical of Earth sensor) 

5. Measurement sample period 
a. 60 sec 
b. 1 sec 

6. Initial position and velocity errors along Radial-Tangential-Normal (RTN) 
directions 

a. 10 km, 10 m/s each direction 
b. 100 km, 100 m/s each direction 

 
We focus on the sensitivity of each parameter relative to a nominal case.  The nominal 
case is defined here to be: 



 
• Horizon-tracking 
• Unknown landmarks  
• Landmark measurement accuracy of 0.1 deg 
• Disk measurement accuracy of 0.1 deg 
• Both sampled every 60 seconds 
• Initial estimate error of 10 km and 10 m/s in each RTN direction.   

 
A 10x10 lunar gravity model was used for the truth, and a 4x4 model was used for the 
Kalman filter.   
 
The position and velocity estimation errors, as well as the landmark estimation error, for 
the nominal case are shown in Figure 6.    The RMS and maximum position errors during 
the second day are 1.4 and 2.8 km, respectively.  The RMS and maximum velocity errors 
during the same period are 1.2 and 2.6 m/s, respectively. 
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Figure 6  Nominal case performance 



 
Each of the six parameters described earlier were then varied and the resulting 
performance was compared with the nominal case.  In all of the subsequent plots, the two 
numbers shown in parenthesis in the legend indicate RMS and maximum errors during 
the second half of the simulation. 
 
 
FOV-Tracking 
 
We assume a 70 deg FOV with the sensor strictly nadir-pointing.  Accordingly, a given 
landmark is tracked for only about two measurements at the 60 second sample time 
versus about ten measurements for the horizon-tracking method.  The position and 
velocity estimate errors for both the FOV-tracking and the nominal horizon-tracking are 
shown in Figure 7.  The RMS and maximum errors are slightly higher at 2.0 and 3.3 km 
for position and 1.7 and 3.2 m/s for velocity. 
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Figure 7  Comparison of FOV-tracking versus horizon-tracking (nominal case) 

 
 
Known Landmarks 
 
The same horizon-tracking method is used in this case except the landmark positions are 
assumed to be known.  Therefore, the total number of Kalman filter states is reduced to 
six.  The results are shown in Figure 8.  The known landmark case performance is better 
by almost a factor of two.   
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Figure 8  Comparison of known versus unknown landmarks (nominal case) 

 
Landmark Measurement Accuracy 
 
In the nominal case, the landmark measurement accuracy of 0.1 deg was used.  This 
corresponds roughly to a medium accuracy sensor of about 100 deg FOV with a 1024 by 
1024 pixel array.  A high accuracy sensor with a 10 deg FOV with the same number of 
pixels would provide measurements that are 10 times more accurate.  The Kalman filter 
performance for this level of accuracy in the landmark measurement is shown in Figure 
9.  Also shown in the figure is the nominal case, as well as a case with no landmark 
measurements, i.e., using only the nominal accuracy (0.1 deg) disk measurements.  
Reducing the landmark measurement accuracy by a factor of 10 improves the 
performance by roughly a factor of two.  Using disk measurements alone gives poor 
performance. 
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Figure 9  Comparison of landmark measurement accuracy of 0.01 deg and no 

landmarks (disk only) against the landmark accuracy of 0.1 deg (nominal case) 



 
Disk Measurement Accuracy 
 
In the nominal case, disk measurements with an accuracy of 0.1 deg was used.  The 
navigation performance with the disk accuracy 10 times worse is shown in Figure 10 with 
the nominal case.  Also shown is the performance with no disk measurements which is 
only slightly worse than the nominal in the steady-state performance, although the 
convergence takes longer.  Using inaccurate disk measurements, on the other hand, 
results in much worse performance. 
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Figure 10  Comparison of disk measurement accuracy of 1.0 deg and no disk 

(landmarks only) against disk measurement accuracy of 0.1 deg (nominal case) 
 
 
Measurement Sample Period 
 
Shortening the time between measurements in a Kalman filter improves performance.  
This is evident in Figure 11 where a 1-sec sampling case is compared with the nominal 
60-sec sampling case.  The 1-sec case is better by roughly five times in the RMS.  
Although the navigation performance is improved, increasing sampling frequency 
increases the load on the onboard flight processor.  
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Figure 11  Comparison of 1-sec sampling versus 60-sec sampling (nominal case) 

 
 
Initial Estimate Error 
 
The final parameter that is considered for variation is the initial estimate error.  The 
nominal case had an initial error 10 km and 10 m/s in each direction of the RTN 
coordinate frame.  Figure 12 shows the performance with a factor of 10 increase in the 
initial position and velocity errors.  Although the convergence takes longer, the steady-
state performance difference is negligible.    
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Figure 12  Comparison of 100km and 100m/s initial estimate error versus the 10km 

and 10m/s (nominal case) 
 



CONCLUSIONS 
 
Autonomous navigation in lunar orbit using optical sensors was investigated in this 
paper.  The methodology involves tracking of a single landmark at a time, but 
continuously acquiring a new one when the old one drops from visibility of the optical 
sensor.  Two measurement types were considered: visible angular measurement of the 
landmark relative to an inertial reference and infrared disk measurement of the Moon. Six 
parameters of interest were varied individually to determine their sensitivity relative to a 
nominal case.  These parameters were tracking method (FOV vs. horizon), landmark 
position knowledge (known vs. unknown), landmark measurement accuracy, disk 
measurement accuracy, measurement sample period, and initial estimate error.   
 
Table 1 summarizes the steady-state RMS errors of these parameter variations.  The 
worst performing of all the variations was the one where no landmark measurements 
were used followed by the case where the disk measurement accuracy was increased to 
1.0 deg.  There were very little differences from the nominal for two cases: no disk 
measurements and initial errors of 100 km and 100 m/s, while switching from horizon-
tracking to FOV-tracking gave a slightly worse performance.  Decreasing the unknown 
landmark measurement accuracy to 0.01 deg or decreasing the measurement sample 
period to 1 second gave similar performance as using known landmarks with 
measurement accuracy of 0.1 deg.  These three parameter variations had steady-state 
RMS errors roughly three times smaller than the nominal case. 
 
To really characterize the navigation performance with the different combinations of 
parameters, a Monte Carlo study needs to be done.  However, the parametric simulation 
study described in this paper shows the relative benefits of each parameter variation and 
that less than 2 km RMS position error can be obtained in most cases. 
 



 
Table 1   STEADY STATE NAVIGATION ACCURACY 

Case 
Position RMS 

(km) 
Velocity RMS 

(m/s) 
Nominal 

Horizon-Tracking  
Unknown Landmarks  

Landmark Measurement Accuracy 0.1 deg 
Disk Measurement Accuracy  0.1 deg  

Sample Period 60 sec 
 Initial Estimate Error 10 km, 10 m/s 

1.4 1.2 

FOV-Tracking 2.0 1.7 

Known Landmarks 0.4 0.4 

No Landmarks 12.6 11.3 

Landmark Measurement Accuracy 0.01 deg 0.5 0.4 

No Disk 1.7 1.4 

Disk Measurement Accuracy 1.0 deg 3.3 2.9 

Sample Period 1 sec 0.3 0.3 

Initial Estimate Error 100 km, 100 m/s 1.3 1.2 
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