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For a cluster of satellites flying in close proximity, the probability of collision (Pc) is of 

great interest.  For a given cluster configuration (geometry), navigation noise, controller, 

and maneuver execution error, the most reliable way to compute Pc is through Monte Carlo 

simulations.  However, Monte Carlo requires running a large number of cases to accurately 

determine Pc. This is time-consuming and usually not practical for the low level of Pc that 

may be desired.  An alternative to Monte Carlo that requires much less computational 

resources involves the use of linear covariance to propagate the position and velocity 

dispersions of the cluster satellites.  This method however is limited by its linear assumptions 

and is unstable for nonlinear problems that can arise in cluster flight.  The use of unscented 

transforms for covariance propagation is shown to be more stable in this case.  A method to 

incorporate the effects of navigation noise, closed-loop control, and maneuver execution 

error is developed.  A sample cluster scenario is evaluated using the covariance method with 

a hybrid method of computing Pc that combines the Mahalanobis distance metric and the 

maximum instantaneous probability.  The results are shown to match the Monte Carlo 

results with a high confidence interval. 

Nomenclature 

Pc = probability of collision 

LC = linear covariance 

MC = Monte Carlo 

x = state 

f = state time derivative function  

),( 1 ii tt   = state transition matrix from time ti to time ti+1 

P = state covariance 

L = number of states 

  scaling parameters 

 = tuning parameters 

 = sigma points 

W = weights 

u = controller output 

dm = Mahalanobis distance 
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I. Introduction 

OR missions involving multiple spacecraft flying in close proximity, accurate computation of the collision 

probability between any two spacecraft is of importance.  Mission objectives dictate whether the spacecraft fly 

in precise formation, for example for synthetic aperture radar, radio interferometry, and distributed imaging, or in a 

loose cluster where the spacecraft are flying close enough for communications between the spacecraft or possibly 

for energy transfer.  For simplicity in this paper, multiple spacecraft flying in close proximity is referred to as a 

cluster regardless of the mission objective. 

 Collision probability is one metric for evaluating the goodness of a cluster configuration design for a given 

mission.  It is also an important consideration in the design of the control system for orbit maintenance, the 

navigation system, and the propulsion system.  The mission will dictate what collision probability is acceptable, and 

this in turn will affect the design trades among the various subsystems of the cluster. 

 The most accurate method to compute the probability of collision (Pc) between any two spacecraft is through 

Monte Carlo (MC) simulations.   For a given initial uncertainty of their position and velocity, a given control 

strategy, if any, and navigation error, the initial conditions are randomly generated, and the trajectory is simulated.  

This method requires a large computational resource to run a sufficient number of random cases to determine Pc 

with sufficient level of confidence.  For the low level of Pc that might be acceptable for a given mission, the number 

of cases can be computationally prohibitive.  For example, given a mean Pc of 2e-5, 56,000 cases must be simulated 

to obtain a 95% confidence interval upper bound of 1e-4. 

 Alternatively, there are numerous methods of computing the collision probability that are based on propagation 

of the position uncertainty statistics.
1,2,3,6,7

  To compute the collision probability using these methods, an accurate 

determination of the position uncertainty covariance matrix is required for each spacecraft in the cluster.  For this 

purpose, linear covariance analysis can be utilized.
4
  Typically, analytical expressions of the system dynamics and 

the control system are derived in order to apply these techniques.  For complicated systems, these analytical 

expressions are difficult, if not impossible, to derive making this method difficult to implement in a general sense.  

Furthermore, its use of the state transition matrix limits its accuracy for highly nonlinear systems. 

 In this paper, we develop a numerical methodology that applies the basic concept of the linear covariance 

analysis, but is flexible for application to a variety of problems.  We further expand the utility of this tool through 

the use of unscented transforms which improves the accuracy for highly nonlinear systems. 

 First we develop the linear covariance concept with the state transition matrix and describe how both closed-loop 

control and navigation errors are incorporated.  Then we show how the unscented transforms can be applied, and 

show an example with validation using the Monte Carlo method. 

II. Methodology 

The approach described in this paper is to compute the probability of collision from the information about the 

statistics associated with each module‟s position.  To this end, a simulation framework was developed that computes 

the covariance matrix required for the Pc calculation for any given scenario.  

A. Simulation Framework 

 Our simulation framework consists of four major blocks: scenario definition, environment and controller models, 

the covariance generator, and the Pc calculator.   The scenario definition, the environment model, and the controller 

are inputs to the covariance generator.  The scenario definition block contains scenario data such as cluster 

configuration, number of satellites in the cluster, their hard body radii, initial conditions, and navigation uncertainty. 

 The environment and the controller are user specified functions and executed from within the covariance 

generator.  The environment function specifies the fidelity of the orbit dynamics propagation such as the order and 

the degree of the Earth‟s geo-potential model, the atmospheric drag model, solar radiation pressure model, and the 

third-body gravitation model.  The controller function defines how the maneuvers are computed and executed.  If the 

control is open-loop, then the nominal maneuvers are executed irrespective of the state of the satellites.  If the 

control is closed-loop, the maneuvers are computed based on the estimated state of the satellites from the navigation 

system.  In either case, the maneuver execution error can be incorporated. 

B.  Covariance Generator 

The covariance generator is primarily based on the linear covariance (LC) methodology as described in Geller
4
 

where it is designed to produce the same statistical results as a Monte Carlo simulation without performing 

thousands of propagations for a given scenario definition.  The covariance computed represents the uncertainty of 

the position and the velocity of a module relative to its nominal trajectory, which is first computed without any of 

F 
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the random components such as maneuver execution error or navigation error.  The state transition matrix is utilized 

to propagate the initial uncertainty covariance to the maneuver time.  At the maneuver time, the uncertainty of the 

maneuver due to navigation error is added to the propagated covariance as well as any uncertainty associated with 

the maneuver execution error.  Note that this methodology assumes that the system is linear.  For small perturbations 

and for short durations, these assumptions hold up well, and a later section shows that the LC-generated covariances 

statistically match the MC-generated covariances fairly well.  We have found that in some cases, the LC method 

produces divergent covariances.  For these cases, we have implemented unscented transforms for the propagation of 

the covariance. 

C. Covariance Matrix 

Most non-MC methods of computing probability of collision require processing of the probability density 

function (PDF) usually assumed to be normal (Gaussian) and summarized as a mean and a covariance representing 

the uncertainty of the state with respect to its nominal state. There are at least three types of covariances associated 

with a given problem: true dispersion covariance, true navigation error covariance, and estimated navigation error 

covariance. 

Figure 1 depicts the covariance (red ellipses) that represents the true dispersion from the nominal trajectory.  

This is the covariance used in the computation of the true probability of collision. It is a combination of the 

propagated initial dispersion and the dispersion due to maneuvers based on estimated states containing navigation 

error.  Dispersion due to actuation error can be included as well. 

 
The other two covariances of interest are shown in Figure 1, as well.  One corresponds to the true navigation 

error and the other to the estimated navigation error.  If the navigation filter is well-tuned, the two can agree well, 

but in general, neither matches the true dispersion which is required for Pc evaluation.  Operationally, however, the 

estimated navigation error covariance is all the information we have about the uncertainty of the states, and it is used 

in the onboard prediction of collision probability.  Note that this estimated collision probability is different from the 

true collision probability computed from the true dispersion as described above.  For evaluation of the goodness of a 

given trajectory profile, the true collision probability is of interest. 

D. Linear Covariance Propagation 

 The LC formulation requires linearization of the system models.  Accordingly, we define the system matrix as: 

 

 

 
 

Figure 1. Illustration of different covariances. 
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where x is the state, typically consisting of position and velocity, and the derivative is evaluated at some nominal 

state xNOM.  The state and its covariance are propagated using the following equations: 
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where ),( 1 ii tt   is the state transition matrix from time ti to time ti+1.   

In order to develop a tool that is flexible for application to a variety of dynamical systems, the state transition 

matrix in the covariance generator is computed by numerical differencing of the system propagation function, which 

we call the „blackbox‟.  Numerical differencing alleviates the need to derive the analytical expression of the 

Jacobian matrix of the system function. The blackbox includes the truth environment, navigation, controller, and bus 

models such as maneuver execution error.  It takes the state at time ti and computes the state at a future time ti+1. 

The j-th column of the state transition matrix is computed as follows: 
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where ),1( jix   corresponds to the output of the blackbox when the j-th element of the input state has been 

perturbed.   The most difficult part of the numerical differencing is determining the appropriate step size  

 

                                                                           
NOMjjj ixixdx )()(   (4) 

 

for each perturbation of the j-th state.  In our implementation, the step sizes were determined from iteration.  If the 

system is linear, the state transition matrix is not as sensitive to the step size.  If the system is nonlinear, it can be 

quite sensitive.  The use of unscented transform ameliorates this problem. 

E. Unscented Transform Method 

In many instances, the nonlinear effects of the system are large enough to make the above linear covariance 

method less accurate.  To better account for the nonlinear effects in the covariance propagation, the unscented 

transforms can be used to include the higher-order non-linear dynamic effects.
5
 

In this implementation, the state vector and the error covariance are used to create a collection of representative 

vectors with the same statistical properties as the state and state error covariance. These equivalent state vectors are 

referred to as sigma points with an assigned weight for each vector.  The individual vectors are propagated through 

the complete nonlinear dynamic model of the system. Based on the assigned weights a new propagated state and 

covariance are obtained.  In order to arrive at the mean and covariance of a variable, a set of weights is required. 

Given an initial mean, provided by the nominal trajectory of a satellite, and its initial covariance 
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the set of sigma points is obtained by combining the Cholesky decomposition of the covariance matrix with the 

mean, which is the nominal state, according to 
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where 
jP is the j-th column of the Cholesky decomposition of the covariance matrix, and  is a scalingparameter.  

The total number of sigma points is 2L+1 where L is the number of states. 
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For the propagation, each sigma point state is assigned a weight according to 
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where  

 

                                                                                LL  )(2   (10) 

 

with controlling the spread of the sigma points,  incorporating distribution knowledge and   as a secondary 

scaling parameter.  The propagation step requires the propagation of the sigma points through the blackbox. Process 

noise covariance can be included, if desired. 

The propagated state and covariance are obtained by combining the set of propagated sigma points 
i  with their 

appropriate weights yielding 
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The sigma points are generated and propagated for each time step of the covariance propagation. 

F. Accounting for Maneuvers 

Maneuvers can affect the state dispersion covariance in two ways: 1) maneuver execution error, and 2) maneuver 

variation due to navigation noise.  As stated previously, the controller is included in the system blackbox.  If the 

control is open loop, then the nominal planned maneuvers are executed without correction, and the state covariance 

is propagated through the maneuver.  The change in the dispersion due to navigation noise is not accounted for.  If 

the control is closed-loop, the maneuvers are computed based on the estimated states from the navigation system, 

therefore the effect of the navigation noise on the state uncertainty will have to be taken into account in the 

covariance propagation. 

 

1. Maneuver Execution Error 

For both open-loop and closed-loop, maneuver execution error can be included.  For calculating probability of 

collision using linear covariance methods, Schiff found that taking into account the presence of the maneuver in the 

computation of the state and the corresponding state transition matrix while accounting for the maneuver uncertainty 

by applying process noise was the most accurate.
10

  Without loss of generality, we assume impulsive maneuvers and 

corresponding update to the covariance is 
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where 
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, for blackbox states consisting of position and 

velocity, and )(iPu
 is a 3x3 covariance matrix of the maneuver execution error. 

 

2. Navigation Noise 

At maneuver times, the contribution of the navigation noise is added to the propagated covariance matrix.  The 

navigation noise affects the states through the controller, where ix̂  is the estimated state with navigation noise, and 

iu is the controller output.  For our implementation, we assume that the control is in the form of an impulsive 

maneuver command.  The covariance is updated using the following equation: 
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where 
navP  is the covariance associated with the navigation noise, and 

)ˆ(
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x

u
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 is the sensitivity of the controller to the 

navigation state.  As in the system state transition matrix, this can be computed by numerical differencing of the 

controller function: 
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where )(ˆ ix j
 is the j-th element of the perturbed navigation state and ),( jiu  corresponds to the output of the 

controller for that particular input state with the j-th element perturbed. Alternatively as in the covariance 

propagation, unscented transforms can be applied for this sensitivity matrix as well.   

A more general application of the navigation noise is given by Geller
4
 where an augmented system consisting of 

both navigation and control is considered.  In our implementation, such a coupled system can be represented as the 

blackbox. 

III. Monte Carlo Validation of Covariance 

Computation 

The linear covariance approach to computing the true 

dispersion covariance matrix was validated through 

Monte Carlo analysis.  For a given spacecraft and for a 

given Monte Carlo run, the simulation proceeds as 

shown in Figure 2. 

The nominal trajectory is first computed without 

navigation noise where dxo and dx are zero in the above 

block diagram.  Then for each Monte Carlo run, the 

initial condition is sampled from the initial uncertainty 

matrix, and the navigation noise is sampled for the 

estimated state used in the controller.   The states are 

saved at a fixed interval, and the covariance over N 

number of runs at a given time i is computed as follows: 
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Figure 2. Monte Carlo simulation for covariance. 
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A. Example 

We consider a station-keeping example of four satellites flying at 300 km altitude in circular reference orbit of 

42 degree inclination.  The cluster configuration was designed such that the satellites are passively safe with a 

minimum inter-satellite distance of 100 meters as shown 

in Figure 3. 

The isotropic one-sigma relative navigation noise is 1 

meter in position and 5 cm/sec in velocity.   The motion 

of the satellites is affected by a 12x12 Earth gravitational 

field and atmospheric drag.  Because of the low altitude 

and the high drag environment, luni-solar gravity and 

solar radiation pressure are ignored.  The ballistic 

coefficients among the satellites vary widely with values 

of 20, 80, 140, 200 kg/m^2, and the hard body radius of 

all the satellites is 4 meters.  The control strategy is to 

maintain the cluster altitude and the relative orbit 

geometry.  A 500 second control cycle was implemented 

to correct for perturbations and bring the satellites to the 

nominal relative orbit geometry.  To compute the probability of the collision over 50 orbits, we apply the linear 

covariance methodology described in this paper to first compute the dispersion covariance history of each satellite 

over 50 orbits. 

For validation purposes, the covariances were also computed using the Monte Carlo method as described in 

Figure 2.  Figure 4 shows a plot of the uncertainties from both covariances in the Radial-Intrack-Crosstrack frame, 

and Figure 5 shows the difference between them.  In Figure 4, the blue curve is from a Monte Carlo simulation of 

240 runs, and green is from LC.  Note that because of the tight control, the covariances are maintained almost 

constant.  Except for the noisiness of the Monte Carlo result, the two are almost indistinguishable.  The Monte Carlo 

generated covariances should become smoother as more runs are used in the calculation.  The standard deviation of 

the difference between the two sigmas is less than one meter. 

 

Figure 4.  Comparison of covariances computed using LC and Monte Carlo.  
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Figure 3. A sample four-satellite cluster. 
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Figure 5:  Difference between LC and Monte Carlo computed covariances. 

 

IV. Probability of Collision Calculator  

The fourth box in our simulation framework is the Pc calculator.  A full discourse on the various methods of 

computing Pc is outside the scope of this paper.  A separate paper which has been recently published discusses the 

various methods as well as a newly developed method that has been shown to be accurate for cluster station-keeping 

scenarios.
8
  The new method is a hybrid of two metrics: Mahalanobis distance and the maximum instantaneous 

probability.
9
 

The Mahalanobis distance is a simple metric to compute an upper bound to collision probability.  Once both the 

state and state uncertainty have been propagated forward for the time period of interest, the computation of the 

Mahalanobis distance requires little additional computational effort. The Mahalanobis distance, dM, and its 

associated upper bound to collision probability, pM, are given by the following equations. 
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For many cases the probability of collision obtained using the Mahalanobis distance gives an upper bound that is 

far too conservative. For this reason other metrics are utilized to further reduce the incurred error in those cases. 

The instantaneous probability of collision, pI, is given by the following equation 
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generally agrees more closely with Monte Carlo than the Mahalanobis distance. Together with the Mahalanobis 

distance these two metrics provide a range in which the true probability of collision will fall. 

A hybrid Pc method that combines the above two metrics is a weighted log average of the two metrics.  A least 

squares fit was performed on a data set representing a large range of relative trajectories to find the weights that 

would best represent the probability of collision obtained from Monte Carlo. The result is 

 

                                                          (20) 

 

B. Computing Pc for Multiple Module Pairs 

The probability of collision, pi, is first computed for each possible module pair combination over a control cycle. 

Each of these probabilities must then be combined to obtain the probability, pj, that at least one collision will occur 

within the cluster. Simply summing the probabilities for each of the possible combinations is inaccurate and can lead 

to probabilities greater than 1. The correct method is to calculate the probability that none of the modules will 

collide and subtract it from 1. 

                                                                       (21) 

 

where m is the number of module pairs. 

C. Computing Pc Over Multiple Control Cycles 

The probability of a collision, pj, within the cluster is computed over each control cycle. Each of these 

probabilities must then be combined to obtain the probability, ptotal, that at least one collision will occur during at 

least one of the control cycles. Simply summing the probabilities for each of the control cycles is inaccurate and can 

lead to probabilities greater than 1. The correct method is to calculate the probability that a collision will not occur 

during any of the control cycles and subtract the result from 1. 

 

                                                                     (22) 

 

where n is the number of control cycles. 

This method can also be used when the probability of collision, p1, is given for a specified length of time, T1, and 

it is desirable to estimate the probability of collision, p2, for a longer time period, T2. 

 

                                                                           (23) 

D. End-to-End Validation 

To verify the accuracy of the Pc estimate, the previous example was modified with a larger hard body diameter 

of 20 meters instead of 4 meters.  The LC analysis and the hybrid Pc method was compared with Monte Carlo 

simulations.  Computing collision probability using Monte Carlo involves randomly perturbing a nominal initial 

state based upon the state uncertainty. The state is propagated forward in time, and the position of the spacecraft is 

checked at each instant in time to see if a collision occurred. This process is repeated, and the probability of collision 

is computed as follows 

 

                                                                                            (24) 

 

where N is the total number of runs and k is the number of runs resulting in a collision. 

The LC analysis and the hybrid Pc method predicted a Pc of 39.5% for this modified example.  The large 

predicted Pc means that we can run a reasonably small number of Monte Carlo runs to obtain a reasonable 

confidence interval.  A total of 240 Monte Carlo simulation runs was performed.  Out of these 240 runs, 79 

collisions were detected corresponding to a 32.9% probability of collision with a 99% confidence interval of  
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                                                                          Pc = 0.2530 < 0.3292 < 0.4122  (25) 

 

The predicted Pc from LC and the hybrid Pc method is within the 99% confidence interval, well within an order 

of magnitude of the true answer. 

V. Conclusion 

An alternative method to Monte Carlo for computing the probability of collision for a cluster of satellites was 

developed.  Propagation of the position and velocity dispersion statistics through the use of linear covariance 

analysis based on numerical computation of the state transition matrix was shown.  Extension of this method using 

unscented transform was also shown.  The effects of navigation noise, closed-loop controller, and maneuver 

execution error were also included.  A sample cluster scenario was evaluated using the covariance method with a 

hybrid method of computing Pc that combines the Mahalanobis distance metric and the maximum instantaneous 

probability.  The results were shown to match the Monte Carlo results with a high confidence interval. 

In the current implementation, the control of each spacecraft was assumed independent of the others.  Future 

work will consider a multi-input and multi-output system blackbox for the generation of the covariance matrices 

where the system consists of multiple spacecraft in the cluster.  Further enhancement will also include augmenting 

the system blackbox with the navigation filter to more accurately represent the coupling between the navigation 

states and the controller states.   
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